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A numerical integration of the Vlasov equation replaces the continuous eigenvalue 
spectrum of the problem by a discrete spectrum, which can be represented by the eigen- 
value spectrum of a Or-rite matrix. This matrix must be dissipative, i.e., the eigenvalues 
must have a negative real part in order to avoid recurrence effects. Several dissipative 
terms in the diagonal of the matrix are studied numerically and analytically and the 
influence of various parameters is investigated. It is shown that a decrease of the last 
few offdiagonal terms in the matrix may also enhance the damping. 

I. INTRODUCTION 

In a recent paper [l] a method has been suggested how to integrate numerically 
the Vlasov equation and to avoid the usual recurrence effects. The recurrence 
effects either force one to inflate unduly the computational effort or limit seriously 
the time during which the numerical solution can be considered to represent a 
solution of the Vlasov equation. The mathematical origin of the difficulty is the 
simulation of a continuous eigenvalue problem [2] with a finite computer. Any 
kind of truncation due to the finiteness of the computer changes the problem into 
an eigenvalue problem with a set of finite discrete eigenvalues which are purely 
imaginary [3]. Consequently the solution of the truncated equations turns out to be 
almost periodic in the density contrary to the solutions of the original problem 
which are damped in the density. 

The problem was transformed in Ref. [I] into the form 

(d/dr)a + R * a = 0 

where R is a (A4 + 1) x (A4 + 1) trigonal matrix with purely imaginary eigen- 
values. The suggested remedy was to add a real part to the eigenvalues which 
damped the solutions by a judiciously chosen cutoff procedure which makes the 
terms in the last line of the matrix nonzero. This procedure proved to be quite 
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successful. However, there were certain numerical stability problems associated 
with the addition of these terms. The main feature of the method was to make the 
eigenvalues complex rather than purely imaginary. It was felt that the same objec- 
tives could be obtained by adding certain diagonal terms to the matrix which also 
make the matrix dissipative. Such dissipative terms are closely related to certain 
“collision” terms and some have been investigated earlier (see, e.g. [4] and [S]). 

In Section II we discuss the influence of diagonal terms on the eigenvalues of the 
matrix R. In Section III we study how damping is enhanced by varying terms in 
the off-diagonals. This is followed by a summary in Section IV. 

II. DAMPING BY DIAGONAL TERMS 

We study the free streaming of the Vlasov equation to which we added a 
“collision term” 

(aflat) + f@ypx) = u(iPpx2y c?+lf (1) 

where 
c = (a/au)((a/av) + 0). (2) 

The collision term C is discussed for Hermite polynomials by Joyce, Knorr, and 
Meier [3]. The case I = 0, m = 0 has been thoroughly studied by Denavit, Doyle, 
and Hirsch [4]. A set of eigenfunctions has been given by Lafleur [5]. For numerical 
simulation the case m = 1 appears to be advantageous because the damping of the 
higher k-modes is enhanced that way. 

Using a Fourier series in x and a series of Hermite polynomials in 0, we obtain a 
set of equations similar to Ref. [l] which is cut off after the M-th equation. 

(a/t%) b, + ikp,(b,-l + by+3 = -uk2mv2r+1bv ; v = 0, l)..., M. (3) 

The coefficients py are defined by the recurrence formula 

PvPv+l = v + 1, (4) 

with p. positive and arbitrary. It is seen that for increasing r preferentially the b, 
with large v are damped. This means that preferentially the rapid fluctuations in 
velocity space are suppressed. Introducing b, = Pa, makes all co&cients real. We 
obtain 

(~+&)a + R * a = 0. (5) 

R is a (M + 1) x (M + 1) matrix and Ri, = oky2”l for m = 1; 
h,j-1 = &.f-+l = kpi . Equation (5) deties our eigenvalue problem. 
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FIG. 1. Imaginary and real part of the eigenvalues A = iw - 6 of the matrix R in Eq. (5) 
for different parameters M, h = u~V(~~+~), and r: (1) o for M = 30, h = 2, r = 0 - 8; (2) o for 
M = 30, h = 6, r = 0; (3) w for M = 40, A = 2, r = 0 - 8; (4) S for M = 30, h = 2, r = 0; 
(5) 8 for M = 40, h = 2, r = 0; (6) 6 for M = 30, h = 2, r = 2; (7) 6 for A4 = 40, A = 2, 
r = 2; (8) 6 for M = 30, h = 2, r = 8; (9) S for M = 40, X = 2, r = 8. 

The eigenvalues of Eq. (5) are easily obtained numerically by putting 
21, = b, exp(&). We write /1 = iw - 6 and plot w and S for various parameters 
in Fig. 1. (44 + 1) is the dimension of the matrix, X is the magnitude of the last 
diagonal term, i.e., RMM = A or A = ~M(~r+r), r characterizes the power of the 
“collision term” C, and k is normalized to k = 1 for all cases. 

As can be seen from Fig. 1 the various roots of w for one parameter set he on a 
curve which is almost a straight line, i.e., we can write to a good approximation a 
solution of Eq. (3) as 

b, = E &[exp i(e + jdo)t - &t]. 
j-0 

(6) 

This means that for zero damping we have almost complete recurrence. Taking up 
the physical analogies of Ref. [l] we can also say that the disturbance travels down 
the v-axis with almost no dispersion. At recurrence time 

?-Ret = 27r/Aw, 

the initial condition is recovered except for a common phase factor. This is shown 
in a model calculation of Eq. (3) in Fig. 2 for different damping terms. 
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FIG. 2. Numerical solutions of Eq. (3) for Y = 0, 8, 16, and 24. It is seen that the solutions 
exhibit very little dispersion, are reflected at the cutoff at h4 = 30, and exhibit various damping 
according to Eq. (8), as they travel along. The curves are calculated for r = 0, and the absolute 
vahre is plotted against time. The algebraic value is indicated on the figure (+ for positive, - for 
negative). 

The asymptotic behavior of the Hermite polynomials for large A4 and y < M is 
given by 

(7) 

It follows that the slopes of the w curves are equal to rr/M112 which is consistent 
with Fig. 1. The curves are almost independent of the parameter r which 
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characterizes the power of the collision term. It is interesting to note that the 
deviation of the w-curves from a straight line occurs mostly for larger j where the 
asymptotic condition y < &PI2 is no longer well satisfied. On the other hand the 
damping decrements are larger for these modes for any r so that the inclusion of 
damping rather reduces dispersion. In addition, it can be shown that the amplitudes 
of the terms in Eq. (6) with stronger damping are small from the outset if gaussians 
or derivatives of gaussians are chosen as initial conditions. 

The curves for the damping decrement 6 show always an increase of damping 
for the modes with increasing w. As r is increased the overall magnitude of 6 goes 
down markedly. The minimum damping S,, (forj = 0) is proportional to h. 

The dependence of the minimum damping on the various parameters can be 
obtained by the following qualitative consideration: The damping of the amplitude 
of a disturbance as it travels down the u-axis can be described by the factor 

exp [-Jb” h(v) dt]. 

According to Ref. [l] the relation between time t and position v of the disturbance 
is given by 

t = yw (9) 

for Hermite polynomials. With Eq. (9) and the right side of Eq. (1) it follows that 

h(u) = UP+1 = X(V/M)2’“1. 

The integral (8) can be trivially evaluated for the case that the disturbance has 
traveled to the cutoff of the matrix. For the time of recurrence 7Rec the amplitude 
is given by 

A(T,,,) = A0 exp[-2hM1/2/(4r + 3)]. (10) 

This relation is well satisfied for the disturbances drawn in Fig. 2. 
In order to express the minimum damping decrements plotted in Fig. 2 with the 

aid of the result (10) we write 

&I TRec = 2hM1J2/(4r + 3) (11) 

because the least damped component in Eq. (6) have the largest amplitudes CVj . 
With P&c = 2M112 we obtain 

So = h/(4r + 3). (12) 

The independence of 6, from M is conspicuous, and the relation is well satisfied. 
In any case we expect only qualitative agreement because we have made use of 
asymptotic formulas which are only approximately satisfied. 
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III. OFF-DIAGONAL DAMPING 

In the previous section it has been demonstrated that recurrence effects can be 
damped effectively by adding diagonal terms to the matrix R of Eq. (5). The 
question arises if the damping can be enhanced by changing the nondiagonal 
terms. Naturally a modification of the terms Rf,i*l are preferable because this does 
not involve any additional computational efforts in a numerical solution of the 
Vlasov equation. The argument why an increase of the damping should be possible 
is the following: According to Eq. (9), the speed of a disturbance is given by 

dvldt = 2v1J2. 

On the other hand it follows from Eq. (4) that asymptotically py CC VI/~. Thus the 
speed of propagation of a disturbance is proportional to the coefficient py in Eq. (3). 
If one modified the coefficients in the last few equations before the cutoff the distur- 
bance should dwell in that area of the matrix longer. On the other hand this is also 
the area of the largest damping as is evident from the right side of Eq. (3), and the 
disturbance experiences a stronger damping. 

We have decreased the last 5 coefficients below their value given in Eq. (3) 
according to 

h = pd -P ewWW - dlh M-44v<A4. (13) 

R=4 

R=6 

R=0 

0.M I I I I I I I I I 
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FIO. 3. The modification of the coefficients of the matrix R according to & = py[l -p 
exp-(M- v)] for M - 4 < Y < M influences the minimum real part 6, of the eigenvalues of 
R. In general the damping is enhanced by the modification. 
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Figure 3 shows the minimum damping 6, as a function of p for B = 1. It is seen 
that the minimum damping decrement goes through a maximum as p increases. 
The larger r, the sooner the maximum occurs. The damping decrement can thus be 
increased by as much as 30 %. If j3 is decreased the decline in the curves is more 
emphasized. This indicates that too sudden a transition of the magnitude of the 
coefficients rather decreases than enhances damping. 

IV. SUMMARY 

The study of the free streaming term of the Vlasov equation can be reduced to 
the study of the eigenvalue spectrum of a finite matrix which replaces the Smite 
matrix of the original problem. Several methods are suggested and studied to make 
the matrix dissipative by adding diagonal terms. These terms correspond to 
generalized Fokker-Planck collision terms in the Vlasov equation. An asymptotic 
formula is derived which allows to estimate the effectiveness of a given set of 
parameters. 

Finally, it is shown that certain modifications in the terms of the off-diagonals 
may increase the damping decrement by as much as 30 %. The results of this report 
are being used to construct a two-dimensional plasma simulation code. 

REFERENCES 

1. G. KNORR, J. Computational Phys., to be published in 1973. 
2. H. GRAD, Singular and nonuniform limits of solutions of the Boltzmann equation, in “SIAM- 

AMS Proceedings,” Vol. 1, 1968. 
3. G. JOYCE, G. KNORR, AND H. MEYER, J. Computational Phys. 8 (1971), 53. 
4. J. DENAVIT, B. W. DONE, AND R. H. HIRSCH, Phys. Fluids 11 (1968), 2241. 
5. C. LAFLEZUR, Methode de Calcul de la Relation de Dispersion d’un Plasma Collisionnel, 

Report EUR-CBA-FC450, Fontenay-aux-Roses, France, 1967. 
6. T. P. ARMSTRONG, R. C. HARDING, G. KNORR, AND D. MONTGOMERY, in “Methods in Com- 

putational Physics,” Vol. 9, p. 70, Academic Press, New York, 1969. 


